Machine Learning for Dental Image Analysis
نویسنده
چکیده
In order to study the application of artificial intelligence (AI) to dental imaging, we applied AI technology to classify a set of panoramic radiographs using (a) a convolutional neural network (CNN) which is a form of an artificial neural network (ANN), (b) representative image cognition algorithms that implement scale-invariant feature transform (SIFT), and (c) histogram of oriented gradients (HOG).
منابع مشابه
Similarity measurement for describe user images in social media
Online social networks like Instagram are places for communication. Also, these media produce rich metadata which are useful for further analysis in many fields including health and cognitive science. Many researchers are using these metadata like hashtags, images, etc. to detect patterns of user activities. However, there are several serious ambiguities like how much reliable are these informa...
متن کاملImage Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملAutomatic road crack detection and classification using image processing techniques, machine learning and integrated models in urban areas: A novel image binarization technique
The quality of the road pavement has always been one of the major concerns for governments around the world. Cracks in the asphalt are one of the most common road tensions that generally threaten the safety of roads and highways. In recent years, automated inspection methods such as image and video processing have been considered due to the high cost and error of manual metho...
متن کاملExploratory analysis of using supervised machine learning in [18F] FDG PET/CT images to predict treatment response in patients with metastatic and recurrent Brest tumors
Aim: Despite grate progress in treatments, breast cancer is still the most common invasive cancer and the most cause of cancer related death in women. Treatment could be improved and perhaps standardized if more reliable markers for tumour progression and poor prognosis could be developed. The aim of this study was to evaluate whether patient-based machine learning (ML) driven ...
متن کاملImage alignment via kernelized feature learning
Machine learning is an application of artificial intelligence that is able to automatically learn and improve from experience without being explicitly programmed. The primary assumption for most of the machine learning algorithms is that the training set (source domain) and the test set (target domain) follow from the same probability distribution. However, in most of the real-world application...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1611.09958 شماره
صفحات -
تاریخ انتشار 2016